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Abstract. For theoretical discussions of black-body radiation in a curved spacetime with 
n spatial dimensions, as envisaged in current superstring theories, one wants to know the 
n-dimensional generalisation of the main standard results. These are given in the present 
paper, but only for zero curvature, namely the Planck distribution, the Wien displacement 
law and the Stefan-Boltzmann law. 

1. Introduction 

The radiation energy flux a, emitted by a black body at temperature T, is given by 
the Stefan-Boltzmann law: 

where A is the surface area of the radiating body and U is the Stefan-Boltzmann 
constant: 

2 ~ 4  
U=- 

15h3c2 

where k is the Boltzmann constant, h is Planck's constant and c is the speed of light. 
This result is influenced by the fact that space is three-dimensional. The present paper 
will derive the Stefan-Boltzmann law for an n-dimensional Euclidean space. We will 
see that the fourth power ofthe temperature in (1) will be replaced by an ( n  + 1)th power: 

a = u , ~ ~ n + l .  

This property was already mentioned in a previous paper [ 11, but no explicit expression 
for the coefficient U,, i.e. the n-dimensional Stefan-Boltzmann constant, was calculated. 
We believe its value has not been published before. The present paper will present 
its derivation. 

2. Calculation 

Consider an n-dimensional cavity with the shape of a hypercube with length ai in the 
xi direction. Its volume V is thus IIi ai. Electromagnetic resonances consist of standing 
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1074 P T Landsberg and A De Vos 

waves with a wavevector satisfying the boundary condition of ideally conducting walls: 

k = -  1 _ -  m, m2 , . . . ,") 
2 ( a , '  a2 a n  

where the mi are positive integer numbers or zero. 

k-space (figure 1). Using the de Broglie relation, the frequency 
The eigenvectors k thus generate an orthorhombic lattice in the n-dimensional 

U = c(  k (  

is associated with a particular eigenmode. 
Therefore the number of modes g with frequency lower than v is equal to the 

number of k lattice points in the hypersphere with radius v/c. This sphere has a 
volume equal to 

w*= V n ( v / C ) n  

where Vn denotes the volume of the n-dimensional hypersphere of radius 1. On the 
other hand, each lattice point occupies a unit cell with volume equal to 

If 

w, >> w, 
i.e. if corner effects can be neglected, then the number of such cells in the hypersphere 
is 

t k3 

Figure 1. Orthorhombic lattice and sphere in k-space. 
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The volume W, has been divided by a factor 2" because only the hyperoctant with 
exclusively positive coordinates is occupied by lattice points. The same result (3) can 
be obtained in a more fundamental way, without having to choose a particular cavity 
geometry (see appendix 1). 

Finally we have to multiply the above result by a factor 2 because of the two 
independent polarisations of electromagnetic radiation. Hence we obtain, after 
differentiation, the following number of modes per unit frequency interval: 

Using the expression for the volume of the hypersphere (see, e.g., [2]), i.e. 

we obtain 

dg 47~""  V 
du T(n/2) C" 

- ( 5 )  

where r ( x )  stands for the gamma function. 
Expressed as a function of the wavelength A = c / u ,  this becomes 

a formula that has been mentioned previously (see problem (29.2) of [3]). 
Having obtained the number of modes in a cavity, with frequency between U and 

uSdu, we now need to find the flux of such monochromatic photons, escaping the 
cavity through a radiating ( n  - 1)-dimensional surface area A (figure 2). 

n 

n M C  

Figure 2. Photon flux through surface area A. The coordinate axis n is normal to the 
surface, while the axes t i ,  t 2 , .  . . , z ~ - ~  are tangent to it. 
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Since the radiation in the cavity is isotropic, i.e. uniformly distributed over all 
directions, 

dw 
[ f .  . .f dw 

P =  

is the probability of a particle to be directed in the elemental solid angle dw. The 
number of photons with such a direction, hitting the surface area A in a time interval 
dt, is the product of three factors: 

( a )  the number of modes per unit volume, i.e. expression ( 5 )  divided by V; 
( b )  the probability P; and 
(c)  the volume V' originally occupied by the photons, i.e. the hypercylinder volume 

Therefore we have to multiply ( 5 )  by 
Ac cos 6 dt. 

1 dw - AC COS 6 d t  
V S f .  . . d o  ' 

After integration over all directions pointing out of the surface and after dividing by 
d?, we obtain the multiplying factor 

dw Ac I f . .  .[cos 6 dw 
V ff  . . . f  dw V f J ' . . . I d w  ' 

-- {{ . . .  JAC -cos 6 - 

In the latter formula both symbols 55. . . stand for an ( n  - 1)-dimensional integration, 
but the denominator is an integration over the n-dimensional unit sphere, whereas the 
numerator is an integration over an n-dimensional unit hemisphere (integration over 
all directions pointing out of the surface). 

Now we remark that 

dw' = COS 6 dw 

is the projection of dw onto the radiating hypersurface, so that the integral s f . .  . f  cos 6 dw over the n-dimensional hemihypersphere is equal to the volume of 
the ( n  - 1)-dimensional unit hypersphere: 

{I ... J c o s 6 d o = ~ . , .  

Note finally that 

[ [ . . . I d o  = S, 

where Sn denotes the surface area of the hypersphere with radius 1. The reader will 
easily verify that 

S, = nVn ( 6 )  

by remarking that the volume of a hypersphere equals the integration of its surface area: 

V,Rn = IoR Snrn-l dr. 
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Thus we have to multiply ( 5 )  by the factor 

Ac V,-, 
V nV, 

Ac r (n /2 )  
v 2J;;r[( n + 1)/2] 

k =-- 

-- - 

which converts the numbers of modes in the cavity volume V into the numbers of 
modes piercing the cavity aperture A per unit time. Hence 

kl = Ac/2 V 

k2 = Ac/ TV 

k3 = Ac/4 V 

k4 = 2Ac/3vV 

k5 = 3Ac/ 16 V 

etc, and 

lim k, = Ac/(2vn)'/'V. 
n-rm 

For n = 1, the (zero-dimensional) surface area A is merely either one or two points. 
We have to replace A by 1 if only propagation in a single direction is considered or 
by 2 if propagation in both directions is considered. For n = 3, we find the familiar 
conversion factor k = Ac/4 V, given in [4]. 

Applying the n-dimensional factor k, to ( 5 )  yields 

After multiplying by the photon energy h v  and by the Bose-Einstein factor 
l/[exp(hv/kT) - 11, we obtain the n-dimensional Planck spectral density: 

2Av("-1)/2 h U" 
db = r[( n + 1)/2] exp( hv/ kT) - 1 * (7) 

Expressed in terms of the wavelength A, the spectrum is 
2A*( n - 1 )/2 A - n - 2  

'A = r[(n + 1)/2] hc2 exp(hc/AkT) - 1 * 

Figure 3 shows some of these curves, normalised with respect to their maximum value. 
The maximum occurs at the wavelength A obeying 

1 hc 
x, kT 

A = - -  

with x, the solution of the transcendental equation 

[ 1 - x/(  n + 2)] exp(x) = 1. 
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0 0.2 0.4 
( k / h c )  AT 

Figure 3. Normalised Planck spectrum as a function of the number of space dimensions n. 

We have 

x1 = 2.8214 

XZ = 3.9207 

~3 = 4.965 1 

x4= 5.9849 

~5 = 6.9936 

etc, and 

lim x, = n + 2 .  
n-rm 

Formula (8) is the n-dimensional Wien displacement law. 

the Stefan-Boltzmann law: 

@ =  

After integrating over all frequencies v, one obtains the n-dimensional version of 

2Ar("-1)/2 h O0 v'dv 
T[(n+1)/2] Fl0 exp(hv/kT)-1 

or 

cp = u , ~ ~ n + l  

with 

In the above formulae l ( x )  denotes the Riemann zeta function. 
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In particular we find 

- 9.46 x W K-2 U ] = - -  
r 2 k 2  
3h 

81(3 )k3  - 1.92 10-10 w m-l K-3 
U 

2 -  h2c 

w k 4  
a, = 7 = 5.67 x lo-’ W m-’ K-4 

15h c 

= 2.01 x lo-’ W m-3 K-‘ 
6 4 r J ( 5 )  k5 

h4c3 
U 4  = 

8.rrsk6 
5 - 6 3 h  c 

U - - - 5 - ; i = 8 . 0 9 ~ 1 0 - ~ W m - ~ K - ~  

etc. 

3. Discussion of the results 

We immediately remark that 

T2 
r 2 k 2  

@E--- 

3h 

= U, as it should. But also U ,  is no novelty, as 

expresses the thermal noise power transfer in one-dimensional optical systems [ 5 ] .  A 
more widely known case of one-dimensional thermal radiation is Johnson noise or 
Nyquist noise, i.e. noise in electrical networks, which however obeys [ 6 ]  

r 2 k 2  
@=- T2.  

6h  

This is caused by the fact that photons in an electrical network are polarised (with 
electric vector perpendicular to the metal conductors), so that an emissivity E = f has 
to be introduced for all the thermal sources, i.e. the electrical resistors. In other words, 
resistors are not black bodies, but grey bodies. 

Whereas u1 and U, are not new, we think that the other generalised Stefan- 
Boltzmann constants un have not been published before. It is clear that u2 is applicable 
to integrated optics, where signals circulating in planar photonic devices, are corrupted 
with two-dimensional black-body noise. 

Finally, the results for n > 3 can be useful in modern quantum field theory. It is 
indeed believed that a natural formulation of current superstring theories is in 10 or 
1 1 dimensions for super-Yang-Mills and supergravity, respectively. For bosonic con- 
formally symmetric string theories even 26 dimensions may be necessary, as reviewed, 
for example, in [7,8]. In each of these theories, one of the dimensions represents time 
and three others represent ordinary space. The extra six, seven or 22 dimensions are 
spatial, but may register only if a very fine space scale is used, as they are in a sense 
‘crumpled up’. Nonetheless the situation may be different in the distant past or the 
far future of the expanding universe. (For relevant recent papers see, for example, 
[9-111.) Although our calculations are worked out for flat spaces, our results for n = 9, 
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n = 10 and n = 25 could possibly be of interest in connection with the above field 
theories: 

= 35Ac/256V 

k,o= 128Ac/315~V 

k25= 676 039Ac/8388 608 V 

and 

327rI4kl0 
99h9c8 

245 7607r41( 1l)k"  
hI0c9 

(+9 = 

ff10 = 

10 779 541 5 0 4 ~ " k ~ ~  
1403 325h25~24 ' U25 = 

Note that l(11) in the above expression for crl0 can, without significant error, be 
replaced by unity. Indeed J ( x )  tends €or x + +a exponentially to 1 and J( 11) equals 
1 .ooo 49. 

The generalisation from photons to any kind of extreme relativistic boson or fermion 
is given in appendix 2. 

4. Application: a radiating hypersphere 

As an example we now consider a hyperspherical radiation source, with radius R. We 
thus have the following radiating surface area: 

A = S,R"-I. (11) 

Combining formulae (9) and ( l l ) ,  together with (4) and (6), yields 

Taking advantage of the following identity: 

2"-' 
J;; 

T(n)=-r(n/2)r[(n+1)/2]  

which is easily verified (and is known as the duplication formula of the gamma function 
[12]), one finally obtains 

2 n J ( n + l )  27rk " a)= (c) kcR"-' T"+]. 
7r 

Figure 4 shows a logarithmic plot of the radiation flux CP against temperature T. 
For convenience, both variables have been made dimensionless: 

cp 
hc2/7r2R2 

@'= 



Stefan- Boltzmann constant in n-dimensional space 1081 

lo-' 10 io3  
T '  

Figure 4. Black-body radiation intensity CP 
units). The parameter n is the number of 

as a function of temperature 
spatial dimensions. 

T ' (both in reduced 

and 

T 
hc/21rkR' 

T' 

We have therefore 

log(@') = log( n )  +log['( n + l ) ]  + ( n  + 1 )  log( TI). 

All straight lines intersect in the vicinity of T'= 1. They are, however, not collinear! 
The reader will verify that, because of restriction ( 2 ) ,  the radiation law ( 1 2 )  is valid 
only for T' sufficiently larger than 1 .  Therefore, we can say that, within its region of 
applicability, i.e. for a large enough RT product, the generalised Stefan-Boltzmann 
radiation intensity is an increasing function of the number of spatial dimensions. 

5. Conclusion 

Black-body radiation in n dimensions has here been analysed by standard methods 
and this has led to the generalised forms of the Planck energy spectrum, the Wien 
displacement law and the Stefan-Boltzmann law (equations (7), (8) and (9 ) ,  respec- 
tively). 

Apart from the intrinsic interest of the generalisations given in the present paper, 
its findings could also be relevant to the theories of electrical circuits, integrated optics 
and quantum fields. 

We would like to conclude by giving a summary of the arguments used in P 2 in 
order to come to our final result (9) ,  and of an alternative argument which might have 
been used, but was not. 
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First, the arguments applied were: 
(i) compute the number of states ( 5 )  per unit frequency range; 
(ii) obtain the energy flux (7 )  per unit frequency range by applying the factor k,,; 

(iii) obtain the energy flux and hence the Stefan-Boltzmann law by integrating 

This procedure has the merit that, at stage (ii), one obtains the generalised laws 

Secondly, one might have proceeded from (i) in the following way. 
(ii) Calculate the total energy content by integrating over frequencies, yielding 

and 

over frequencies. 

of Planck and Wien. 

(with a polarisation factor 2) 

This formula occurs essentially in [3, equation (31.20)] and leads to the recognition 
of the system as an 'ideal quantum gas' in the sense of 0 27 of [3], i.e. a system obeying 
p V =  gU, with g a constant. In the present case g turns out to be l l n .  

(iii) Obtain the total energy flux by applying the factor k, to U. 
The latter procedure gives U, but it misses the laws of Planck and Wien. The two 

procedures are, however, basically equivalent. 
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Appendix 1 

Suppose each mode occupies a volume h" in phase space, according to the Heisenberg 
principle. Then the number of states in an infinitesimal element of phase space is 

dg = dxl dX2. . . dx, dp, dp, . . dPn/ h". 

Integrating with respect to the n space coordinates over the volume V and with respect 
to the n momentum coordinates over a hypersphere with radius p yields 

g = VV,,p"/h" 

and thus (3), after substituting p by hv/c. 
This alternative point of view is, in fact, the one followed by [l]. Comparison 

between the classical and the quantum approach is adequately discussed by Schrodinger 
[ 131 for the case n = 3. 

Appendix 2 

Whereas the thermodynamics of photons, as well as other relativistic bosons, takes 
advantage of the integral 

(A2.1) 
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the statistics of extreme relativistic fermions (of negligible chemical potential) leads 
to the integral 

(A2.2)  

(see, e.g., PI) .  
If P b  is the number of degrees of polarisation of a particular boson type and Pf 

the number of degrees of polarisation of a particular fermion type, we define the total 
number of boson and fermion types as 

n b = c p b  
n f = C  Pf. 

In expression (10 )  for the Stefan-Boltzmann constant we have to replace the photon 
polarisation factor 2 by nb for the total boson contribution and by n, for the fermion 
contribution. Finally, taking (A2.1)  and (A2.2)  into account, we get for the overall 
Stefan-Boltzmann constant: 

It should be noted that, for n = 9 ,  the result 
1 6 ~ ' ~  k" 

99 h9c8 
U, = - - [ nb + ( 1  - 2-9) n f ]  

is not in agreement with the value 
872 

- [ n b + ( l  -2-')nf] 
3465 

mentioned in [ 9 , 1 0 ] .  We believe that, in the latter expression, the units are chosen 
such that k = c = h = 1 ,  so that it corresponds to 

8.rr5 k" 4096 7~ l 4  k l o  

3465 h c 3465 h9c9 
(A2.3)  -- , 9 [ n b + ( ~ - 2 - 9 ) n f ] = -  - [nb+(1-2- ' )n , ]  

which (after multiplication by V I o )  is the correct value of the energy content in the 
volume V ,  but is not the energy flux through the surface A. In order to obtain the 
radiation flux one still has to multiply (A2.3)  by ks = 35Ac/256V. 

We believe that the authors of [ 9 ]  make a misleading use of the term 'Stefan- 
Boltzmann constant', as the Stefan-Boltzmann law is related to energy fluxes through 
a surface and not to energy contents in a volume. 
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